
Diffusion and structure in silica liquid: a molecular dynamics simulation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2007 J. Phys.: Condens. Matter 19 466103

(http://iopscience.iop.org/0953-8984/19/46/466103)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 29/05/2010 at 06:41

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/19/46
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 19 (2007) 466103 (12pp) doi:10.1088/0953-8984/19/46/466103

Diffusion and structure in silica liquid: a molecular
dynamics simulation

P K Hung, N V Hong and L T Vinh

Department of Computational Physics, Hanoi University of Technology, Vietnam, 1 Dai Co Viet,
Hanoi, Vietnam

E-mail: pkhung@fpt.vn

Received 4 April 2007, in final form 21 August 2007
Published 10 October 2007
Online at stacks.iop.org/JPhysCM/19/466103

Abstract
Diffusion and structure in liquid silica under pressure have been investigated by
a molecular dynamics model of 999 atoms with the inter-atomic potentials of
van Beest, Kramer and van Santen. The simulation reveals that silica liquid
is composed of the species SiO4, SiO5 and SiO6 with a fraction dependent
on pressure. The density as well as volume of voids can be expressed as a
linear function of the fraction of those species. Low-density liquid is mainly
constructed of SiO4 and has a large number of O- and Si-voids and a large void
tube. This tube contains most O-voids and is spread over the whole system. The
anomalous diffusion behavior is observed and discussed.

1. Introduction

The structure and diffusion of ions in liquid silica has been under intensive study from
both experiment and computer simulation [1–12]. One of the major successes in molecular
dynamics (MD) simulation is Waff’s prediction stating that the self-diffusion coefficient (SDC)
of network-forming species increases with pressure [1]. Later, this effect was verified by
experiments [2] and by MD works on silica and alkali silicate [3, 4, 9], suggesting that the
SDCs of Si and O increase with pressure and reach a maximum around 12–15 GPa [3].
The temperature dependence of SDCs in liquid SiO2 is studied in [3, 33] which finds that
SDCs show the Arrhenius law at low temperature and the power law at high temperature.
Furthermore, their calculated activation energies for diffusion of Si and O are very close to the
experimental data in [5, 6] (its values for Si and O are 6 and 4.7 eV respectively). Recently, the
anomalous diffusion and structural order in silica liquid have been studied in MD models [8].
According to the result from [8], at a density of 3000 kg m−3, the dynamics become faster due
to the disruption of structural order, but at a density of 4000 kg m−3 the dynamics are slow
due to the high density. We also find some other works concerning the anomalous diffusion
in liquids such as SiO2, GeO2 and H2O [11, 13–17]. However, most models interpreted this
phenomena as relatively simple, based mainly on the coordination analysis.
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Figure 1. The BKS and corrected BKS potentials.

First-principle simulation can provide very accurate data for numerous physical properties
of silica liquid and glass [27, 28], but it is limited to a few hundred atoms at most. Hence,
the classical MD simulation is an effective way to deal with such problems where the long- or
intermediate-range order is involved [33–35]. In particular, as shown in [21, 27, 29, 33–35]
classical force fields are indeed able to give a good description of quantities like the structural
factor, viscosity and diffusion constants. The characteristic feature of network-forming fluids is
the presence of a large number of voids [18–20, 22, 23]. Despite the fact that voids are strongly
related to diffusion and densification, the void as well as its aggregation in liquid SiO2 under
pressure has not yet been investigated. Therefore, the goal of current work is to show voids and
their role for diffusion and densification in simulated liquid SiO2. In addition, we determined
whether the basic units SiOx (x = 4, 5 and 6) are identical in constructed MD models under
different pressure and the relationship between the SiOx fraction and some physical properties
is clarified. These issues, to our knowledge, have not been addressed in earlier MD studies
of pressure-induced liquids SiO2 [11, 17, 28, 29, 33–35]. We also interpret the microscopic
mechanism of densification and of dynamics in liquid SiO2, based on the viewpoint that liquid
is a mixture of species SiOx with the fraction varied with pressure.

2. Calculation method

We conduct the MD simulations for a system of N = 999 atoms (666 O and 333 Si). The
van Beest, Kramer, van Santen (BKS) potential is adopted [24] because it is still simple and
produces well structural and dynamic properties for liquid SiO2 [7, 8]. The Ewald summation is
used to calculate the long-range Coulomb interactions. The BKS potential has the non-physical
feature that the interaction energy for the Si–O pairs diverges to −∞ as their separation goes to
zero, so we add a Lennard-Jones (15-6 type) term to the BKS potential that prevents this effect
at short distance, but it does not alter the form of the BKS potential at large separation. In
figure 1 we compare the corrected BKS potential with its original form. It can be seen that both
curves almost coincide with each other at atomic separation larger than 1.9 Å. The MD time
step is equal to 0.4 fs. It is essential to notice that the accuracy of the MD method depends on
the value of MD time step used in the simulation. Commonly, it is taken to be about 1 fs, which
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Figure 2. Density versus pressure for silica liquid at 3000 K.

is twice as large as the MD time step used in our work. In our experience this MD time step
allows us to get high accuracy in calculation. The initial configuration is a good equilibrium
model of liquid SiO2 at 3000 K and at ambient pressure. This model has been prepared by
the method described in detail in [19]. For each state point, the simulation is conducted
upon constant pressure and temperature (N PT ensemble) and the system is equilibrated to
near 3000 K and the desired pressure P . Then the system is held upon constant volume and
energy (NV E ensemble) within 200 000 MD steps to reach a good equilibrium. For each run,
the pair radial distribution function and thermodynamic quantity (P, V , T, E) of the system
are examined many times to check whether the system reaches the equilibrium state. After
that we calculate the positional and angular characteristics by averaging over the 1000 last
configurations separated by 10 MD steps.

If every atom is considered as a sphere, then there is a part of the model in which no atomic
sphere lies. The radii of Si and O atoms is 1.46 and 0.73 Å respectively. The void is defined as
a sphere that is in contact with four atoms and does not intersect with any atom. Details of the
void calculation can be found elsewhere [18, 19].

3. Result and discussion

3.1. Local structure

An overview of our simulations is presented in figure 2, which displays the plot of density
versus pressure. The structural characteristics of the constructed models is summarized in
table 1. It can be seen that the BKS model at ambient pressure reproduces well the structural
data obtained experimentally. Now we turn our attention to building blocks (basic units)
SiOx and it is necessary to determine the distribution of silicon coordination number (CN). To
calculate CN we used the cutoff distance, chosen as a minimum after the first peak in the pair
radial distribution functions (PRDF). The cutoff distance is determined by averaging over the
1000 last configurations separated by 10 MD steps. The error of the calculated cutoff distance
is ±0.02 Å. Figure 3 shows the dependence of SiOx fractions on pressure. Here x = 4, 5
and 6. We also find some SiOx with x = 3, 7 and 8, but their fraction is smaller than 0.01.
The fraction of four-coordinated silicon decreases by 39% as pressure increases from 0.28 to
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Figure 3. The dependence of SiO4, SiO5 and SiO6 fractions on pressure for silica liquid at 3000 K.

Table 1. Structural characteristics of silica liquid at 3000 K. ri j , gi j —the position and height of the
first peak in PRDFs gi j (r); Zi j —the averaged coordination number. Here 1–1 for the Si–Si pair;
1–2 for the Si–O; 2–1 for the O–Si; 2–2 for the O–O.

ri j (Å) gi j Zi j

Pressure (GPa) 1–1 1–2 2–2 1–1 1–2 2–2 1–1 1–2 2–1 2–2

0.28 3.10 1.60 2.60 3.12 10.23 2.91 4.34 4.05 2.02 7.96
2.93 3.10 1.60 2.60 2.73 8.33 2.61 5.16 4.31 2.16 11.42
5.14 3.10 1.60 2.56 2.61 7.52 2.52 5.78 4.48 2.24 12.10
8.40 3.08 1.62 2.52 2.48 6.55 2.44 6.95 4.79 2.40 13.24

11.23 3.10 1.62 2.50 2.48 6.10 2.45 7.50 5.05 2.53 14.01
13.98 3.08 1.62 2.50 2.47 5.97 2.45 8.01 5.11 2.55 14.35
20.64 3.10 1.64 2.46 2.50 5.58 2.53 8.67 5.47 2.73 15.15
24.12 3.10 1.64 2.46 2.44 5.50 2.54 8.97 5.54 2.77 15.75
28.02 3.08 1.64 2.46 2.49 5.49 2.58 8.92 5.72 2.86 15.66

0a 3.12 1.62 2.65
0b 3.077 1.608 2.626

a Experimental data from [30].
b Experimental data from [31, 32].

5.14 GPa. In this pressure region most of the loss of SiO4 is accounted for by an increase in
SiO5. With further increasing pressure, SiO6 gradually replaces the SiO4 and SiO5. Beyond
29 GPa the percentage of six-coordinated silicon reaches about 65% and it clearly indicates the
transformation of liquid silica from tetrahedral to octahedral network structure.

Useful information about SiOx can be inferred from the bond-angle distributions. In this
work we only calculate the most important angles such as the O–Si–O and Si–O–Si angles. The
fist angle characterizes the atomic arrangement inside SiOx and the second one provides the
connectivity between them. In figure 4 we display the angle distributions calculated separately
for SiO4, SiO5 and SiO6 units. For the ideal tetrahedron SiO4 the angle of O–Si–O is equal
to 109.7◦. Therefore, a maximum at 105◦ for an O–Si–O angle distribution of SiO4 indicates
the distorted tetrahedral network structure. In the case of SiO5 and SiO6 we observe two peaks
centered at 90◦ and 155◦. It is interesting to note that the O–Si–O angle distributions are
almost unchanged with pressure (see figure 4). The Si–O bond-length also changes little under
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Figure 4. The angle distribution for silica liquid at 3000 K. (a) for O–Si–O in SiO4; (b) for O–Si–O
in SiO5; (c) for O–Si–O in SiO6 and (d) for Si–O–Si.

pressure. It means that the units SiOx are identical in different simulated liquids; hence we can
conclude that silica liquid likes a mixture of species SiO4, SiO5 and SiO6 with the proportions
varied with pressure. A two-state model in which the liquids are assumed to be made up of low-
and high-density species, successfully describes the polymorphism for such liquids as SiO2 and
GeO2 [10, 12]. In accordance with our simulation, these species are SiO4, SiO5 and SiO6; and
their proportions vary with pressure. From this viewpoint one can expect that some physical
properties of silica liquid could be expressed as a function of SiO4, SiO5 and SiO6 fractions.
Thereby, the density of system ρ can be given as

ρ = aCSiO4 + bCSiO5 + cCSiO6 , (1)

where CSiO4 , CSiO5 , CSiO6 are the fraction of SiO4, SiO5 and SiO6 given from figure 3; a, b and
c are parameters equal to 2.564, 3.666 and 4.614 g cm−3 GPa−1, respectively. As shown from
figure 1, the calculated data from the simulation and (1) are in excellent agreement.

The valuable information about linkage between two adjacent SiOx is provided by the Si–
O–Si angle and the distribution of oxygen linkage. As shown from figure 4, at low pressure the
Si–O–Si angle distribution has a main peak at 144◦ and it is closed to experimental data [25, 26].
At higher pressure the Si–O–Si angle distributions split into two peaks. These peaks are located
at 95◦ and 125◦ at 28.04 GPa. Two adjacent SiOx are linked to each other through common
oxygen, which we denote as ‘bridge oxygen’. The distribution of oxygen linkages is presented
in table 2. According to this table, most connections are one-oxygen, but as the pressure
increases, the fraction of two- and three-oxygen connectivity becomes considerable, which
reflects on the appearance of two peaks in figure 4(d).
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Figure 5. The radii distribution of voids.

Table 2. The distribution of oxygen linkages. m is the number of oxygens that two neighbor units
SiOx are bonded to. The next columns indicate the percentage of connectivity. For example, at
0.28 GPa, 1.21% of connectivity is two-oxygen.

Pressure (GPa)

m 0.28 2.93 5.14 8.40 11.23 13.98 20.64 24.12 28.02

1 98.77 92.58 88.80 84.07 80.90 78.96 76.44 75.67 74.04
2 1.21 7.24 10.70 14.95 17.80 19.59 21.73 21.82 23.44
3 0.01 0.18 0.50 0.98 1.30 1.45 1.83 2.51 2.51
4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01

3.2. Void and void aggregation

Figure 5 shows the void radii distribution (VRD). The major change with increasing pressure
observed here is a shifting of the main peak to small radii and the VRD becoming broader
as pressure lowers. In the pressure range from 0.28 to 5.14 GPa, the peak of the VRD shifts
from 1 to 0.7 Å and its height increases from 0.14 to 0.17 respectively. With further increasing
pressure the position of the VRD peak remains unchanged, but its height gradually increases.
In the pressure region of 20.64–28.02 GPa the VRD is almost unchanged.

As mentioned above, voids could locate next to each other and create a large cluster. In
the current work we examined two kinds of void aggregations: void cluster (VC) and void tube
(VT). The first void aggregation is a set of voids consisting of a central void and several smaller
voids overlapping the central void. The second one contains a number of voids with radius
bigger than the radius of an oxygen atom and each void in a VT must overlap at least with an
adjacent void by a section circle with a radius bigger than the oxygen radius. From a geometric
viewpoint, the VT is a channel along which the oxygen can travel without intersection with any
atomic sphere. Some typical VC and VT clusters detected in our models are shown in figure 6.

In order to gain more detail about a VC we also calculate its volume by randomly
generating several thousand points in a cube containing a VC. The volume of a VC is calculated
as: VVC = Vcube · nin/ntotal. Here Vcube is the volume of the cube; ntotal is the total number of
generating points, nin is the number of points located within VC. The VC volume distributions
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Figure 6. The VC (a) and VT (b); the number below the VC image shows the number of voids in
this VC.

Table 3. The volume distribution of VCs. The first column shows the volume range. Numbers 0,

1, 2, 3 and 4 in the first column correspond to the volume range of: 0–13.04 Å
3
; 13.04–26.08 Å

3
;

26.08–39.12 Å
3

and bigger than 39.12 Å
3
. The next column indicates the number of VCs

detected in the model. For example, at 2.93 GPa there are 95 VCs with volumes in the range of

13.04–26.08 Å
3
.

Pressure (GPa)

0.28 2.93 5.14 8.4 11.23 13.98 20.64 24.12 28.02

0 768 1028 1190 1228 1335 1378 1460 1487 1507
1 115 95 75 53 25 25 8 7 4
2 36 14 5 3 1 0 0 0 0
3 17 2 2 0 0 0 0 0 0
4 6 0 0 0 0 0 0 0 0

are presented in table 3. From this table we can see that the number of voids with volume
bigger than 13.04 Å

3
(volume of silicon = 4πr 3

Si/3 = 13.04 Å
3
; rSi is the radius of silicon)

monotonically decreases with pressure. Meanwhile, in contrast, the number of VCs with
smaller volume increases. At ambient pressure we find six very big VCs with volume at least
four times bigger than the volume of a silicon atom. Obviously, these VCs like the microscopic
cavity.

Table 4 shows that the number of VCs and VTs increases by 1.6 times and 2.1 times,
respectively, as pressure increases from 0.28 to 28.02 GPa. Among the VTs in each system
we denote the largest one as LVT. Under a pressure of 0.28 GPa the LVT contains 3033 voids,
which is 91% of voids with radius bigger than the oxygen radius. Hereafter, we call this void
the O-void and a void with radius bigger than the silicon radius the Si-void. With increasing
pressure the number of O-voids in LVTs rapidly decreases. Accordingly, at 28.02 GPa the
LVTs have only 28 O-voids which is about 2% of the O-voids. To estimate the evolution of
void and void aggregation, we calculated the ratio between the volume occupied by voids and
the volume of the simulation cell. Figure 7 displays the volume fraction of various kinds of
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Figure 7. The dependence of volume fraction on pressure.

Table 4. The characteristics of VCs and VTs. NVC, NVT are the number of VCs and VTs; NLVT is
number of voids in LVTs.

Pressure (GPa)

0.28 2.93 5.14 8.4 11.23 13.98 20.64 24.12 28.02

NVC 942 1139 1272 1284 1361 1403 1468 1494 1511
NVT 146 249 306 307 341 316 349 313 307
NLVT 3033 2033 292 182 202 62 38 37 28

voids versus pressure. We can see that they are close to each other at low pressure, but under
higher pressure, the volume fraction of Si-voids and LVTs rapidly decreases to zero. As in the
case of density, the volume fraction of all voids and O-voids is a linear function of the fraction
of SiO4, SiO5 and SiO6 as follows:

υv = avCSiO4 + bvCSiO5 + cvCSiO6 . (2)

Here av = 0.506; bv = 0.283; cv = 0.277 for all voids and av = 0.491; bv = 0.208;
cv = 0.140 for O-voids. The data calculated by (2) is presented in figure 7 and we observed
again a good agreement.

It is interesting to compare the �V and the decrease in volume occupied by various kinds
of voids under densification. Here �V is the decrease in volume of the simulation cell. The
result of this calculation is shown in figure 8 and we can see that �V is close to the decrease in
the volume occupied by all voids. Therefore, the part of the simulation cell occupied by silicon
and oxygen atoms is almost unchanged during densification. Furthermore, the horizontal lines
in figure 8 indicate that as the pressure becomes higher than 8.4 GPa most Si-voids as well as
the major part of the LVTs were eliminated.

We now analyse the microscopic mechanism responsible for the large compressibility
of liquid silica. The author in [28] stated that the coordination changes are not sufficient
alone to explain the compressibility of liquid SiO2 and three different mechanisms must
occur: (1) reduction of the Si–Si distance, (2) elimination of three-member rings and (3) an
increase in connectivity caused by coordination defects. Another mechanism (the continuous
restructuring) is proposed in [35], suggesting the local breaking and reconnecting of bonds.
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Figure 8. The decrease in volume of voids and void aggregation under pressure.

Overall, from these works it is not clear what the quantitative contribution of the above-
mentioned mechanism in volume reduction is. Our simulation reveals that the change in
fraction of SiO4, SiO5 and SiO6 is responsible for densification and the replacing of SiO4 by
SiO6 or SiO5 is accompanied with a significant decrease in the volume of voids. It also means
that the densification involves the change in number of various kinds of SiOx existing in the
system. In particular, each SiO6 and SiO5 contributed 1.8 and 1.43 times the volume reduction
with respect to SiO4 (see parameters a, b and c in equation (1)); the volume of all voids was
reduced by up to 50% between 0 to 28.02 GPa (see figures 7 and 8). It is interesting to note
that the quartz/stishovite density ratio is 1.3 which is quite alot smaller than the SiO6/SiO4

volume contribution obtained in our simulation (∼1.8). This large difference is caused by
voids located between SiOx ; those voids became significantly smaller under high pressure.
Therefore, the discrepancy between our simulation and the result in [28, 35] is that these authors
use the quartz/stishovite density ratio to estimate the compressibility and different inter-atomic
potentials are used in our work and their work.

3.3. Diffusion

The diffusion coefficient for components in a system can be calculated as

lim
t→∞

〈r 2(t)〉
6t

= D, (3)

where 〈r(t)2〉 is the mean-squared displacement of atoms which is plotted in figure 9. The result
for diffusion constants Dx are shown in figure 10. Here the anomalous variation of the diffusion
constant is observed with a maximum around 10–12 GPa. The non-monotonous behavior Dx

is already reported in [8, 29] (with different model). Furthermore, the coefficient DSi is close
to DO at ambient pressure and at 28.02 GPa, but at around 10–12 GPa DO became larger than
DSi. This result can be interpreted based on the above-mentioned viewpoint that liquid silica
is composed of species SiO4, SiO5 and SiO6. Because the ratio DSi/DO is close to 1, the
oxygen and silicon probably diffuse by movement of species SiOx . In accordance with figure 2
we can notice that the maximum of fraction SiO5 in the investigated pressure range is reached
at around 10–12 GPa, corresponding to the maximum shown in figure 10. It means that the
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Figure 9. Mean-squared displacement versus time for Si ((a), (b)) and O ((c), (d)) atoms.

Figure 10. The diffusion constants versus pressure.

mobility of SiO5 is much faster than SiO4 and SiO6. Correspondingly, as pressure increases to
10–12 GPa both DSi and the fraction of SiO5 increases. Further increasing the pressure results
in decreasing DSi and the fraction of SiO5, but at 28.02 GPa the DSi is still greater than that at
ambient pressure. Because the fraction of SiO6 is dominant at 28.02 GPa, whereas the majority
of SiOx is SiO4 at ambient pressure, the mobility of SiO6 is greater than that of SiO4.

10
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We now turn our attention to the diffusion mechanism of oxygen. Figure 10 clearly
indicates the change in diffusion mechanism for silicon and oxygen between 0 and 10–12 GPa.
The existence of LVTs, VCs and a large number of O-voids ensures the possibility of oxygen
diffusion via O-voids through LVTs and VCs as non-bonding oxygen. However, at ambient
pressure this mechanism is excluded due to strong Si–O bonds in SiO4 and the system contains
only SiO4. As pressure increases to 10–12 GPa the fraction SiO5 is dominant and the size
of LVTs is also large enough. Moreover, the two- and three-oxygen connectivity becomes
considerable, which favors the oxygen breaking Si–O bonds and diffusing via O-voids. It then
leads to a considerable contribution of oxygen hopping via O-voids in comparison with the
movement of species SiOx . We also observed that the diffusion constant DO is larger than DSi.

Further increasing the pressure results in the elimination of O- and Si-voids. The LVTs
become too small, which prevents oxygen diffusion by the hopping mechanism and we observe
again the ratio DSi/DO ∼ 1 as in the case of ambient pressure. This means that Si and O diffuse
mainly through the movement of SiO5 and SiO6.

4. Conclusions

The main conclusions that can be drawn are as follows.

(i) The MD simulation shows that the silica liquid is made up of a mixture of species SiO4,
SiO5 and SiO6. For the first time we find that these species are identical in different
constructed models, therefore pressure-induced liquid silica is like a mixture of those
species with the fraction varied with pressure. This issue is supported by the fact that
some physical properties, such as the density and volume of voids, could be expressed as
a linear function of SiO4, SiO5 and SiO6 fractions. Low-density liquid (low pressure) is
constructed mainly by SiO4 and has a large number of O-voids, Si-voids and a large LVT.
This LVT contains most O-voids and is spread over the whole system. Furthermore, low-
density liquid also contains many microscopic cavities (large VCs). In contrast, for a high-
density liquid the number of O-voids, Si-voids as well as the size of LVTs is much smaller
than in a low-density liquid. The densification concerns mainly the elimination of voids,
but the part of the simulation cell occupied by oxygen and silicon is almost unchanged.
The structure of the low-density liquid also differs from the high-density liquid in the
distribution of oxygen linkages.

(ii) We find that the diffusion mechanism of oxygen is changed under pressure.
Correspondingly, the oxygen and silicon probably diffuse by the movement of SiOx at 0
and at 28.02 GPa. Oxygen starts to diffuse by the hopping mechanism via O-voids through
LVTs and VCs around 10–12 GPa. The mobility of SiO5 is much greater than that of SiO4

and SiO6.
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